Constraint Logic Programming
User Defined Constraints

User defined constraints or *rules* allow the programmer to reuse constraints.

\[
\text{parallel_resistors}(V, I, R1, R2) : - \\
V = I1 \times R1 , V = I2 \times R2, I = I1 + I2.
\]

A *User defined constraint* is of the form \(p(t_1, \ldots, t_n) \) where \(p \) is an \(n \)-ary *predicate* and \(t_1, \ldots, t_n \) are expressions from the constraint domain.
Definitions

literal: A primitive constraint or a user defined constraint

goal: A sequence of literals.

A *rule*: is of the form $H :\!:- B$ where

1. H (the *head* of the rule) is a *user-defined constraint*; and

2. B (the *body* is a *goal*).
A CLP Program: Definition

A (constraint logic) program is a sequence of rules.

The definition of a predicate \(p \) in a program \(P \) is the sequence of rules appearing in \(P \) which have a head involving \(p \).
Variants

A *syntactic object* is a constraint, user-defined constraint, rule or goal.

The result of applying a *renaming* ρ to a syntactic object o written $\rho(o)$ is the expression obtained by replacing each variable x in o by $\rho(x)$.

A syntactic object o is a variant of a syntactic object o' if there is a renaming ρ such that $\rho(o) \equiv o'$.

Renaming $\{x \mapsto a, y \mapsto b\}$, renames $f(x, g(x, y), m)$ to $f(a, g(a, b), m)$.
Rewriting

Let G be a goal of the form

$$L_1, \ldots, L_{i-1}, L_i, L_{i+1}, \ldots, L_m$$

where L_i is the user defined constraint $p(t_1, \ldots, t_n)$ and let R be a rule of the form

$$p(s_1, \ldots, s_n) : \neg B$$

A rewriting of G at L_i by R using ρ is the goal

$$L_1, \ldots, L_{i-1},
\quad t_1 = \rho(s_1), \ldots, t_n = \rho(s_n), \rho(B),
\quad L_{i+1}, \ldots, L_m$$

where ρ is a renaming chosen so that the variables in $\rho(R)$ do not appear in G
Examples

% factorial

fac(0,1). % (R1)
fac(N, N*F) :-
 N >= 1, fac(N-1, F). % (R2)

% voltage divider

voltage_divider(V,I, R1, R2, VD, ID) :-
 V1 = I * R1,
 VD = I2 * R2,
 V = V1 + VD,
 I = I2 + ID.
Evaluation

A state is a pair \(\langle G|C \rangle \) where \(G \) is a goal and \(C \) is a constraint. \(C \) is called the constraint store.

A derivation step from \(\langle G_1|C_1 \rangle \) to \(\langle G_2|C_2 \rangle \), written

\[
\langle G_1|C_1 \rangle \Rightarrow \langle G_2|C_2 \rangle
\]

is defined as follows:
Let G_1 be the sequence of literals L_1, \ldots, L_m there are two cases:

1. L_1 is a primitive constraint. Then C_2 is $C \land L_1$ and, if $solv(C_2) = false$, G_2 is the empty goal otherwise G_2 is L_2, \ldots, L_m.

2. L_1 is a user-defined constraint. Then C_2 is C_1 and G_2 is a rewriting of G_1 at L_1 by some rule R in the program using a renaming ρ such that the variables in $\rho(R)$ are different from those of C_1 and G_1. If there is no rule defining the predicate of L_1 then C_2 is $false$ and G_2 is the empty goal.