
ISO/IEC DTR 13211–3:2006

Definite clause grammar rules

Editor: Paulo Moura
pmoura@di.ubi.pt

slightly modified by DIN NI22 AK17

November 11, 2008

Introduction

This technical recommendation (TR) is an optional part of the International
Standard for Prolog, ISO/IEC 13211. Prolog manufacturers wishing to imple-
ment Definite Clause Grammar rules in a portable way shall do so in compliance
with this technical recommendation.

Grammar rules provide convenient and simple functionality for parsing and
processing text in a variety of languages. They have been implemented in many
Prolog systems. As such, they are deemed an worthy extension to the ISO/IEC
13211 Prolog standard.

This TR is an extension to the ISO/IEC 13211–1 Prolog standard, adopting
a similar structure. Specifically, this TR either adds new sections and clauses
to, or modifies the reading of existing clauses on ISO/IEC 13211–1.

This TR provides reference implementations for the specified built-in predi-
cates and for a translator from grammar rules into Prolog clauses. In addition,
it includes a comprehensive set of tests to help users and implementers check
for compliance of Prolog systems. The source code of these reference implemen-
tations may be used without restrictions for any purpose.

This draft may contain in several places informative text, type-set in italics.
Such informative text is used for editorial comments deemed useful during the
development of this draft and may not be included in the final version.

Previous editors and draft documents

• Roger Scowen: N171 — ISO/IEC DTR 13211–3:2004 Grammar rules in
Prolog, ISO, 2004-05

• Tony Dodd: DCGs in ISO Prolog — A Proposal, BSI, 1992

1

1 SCOPE 2

Contributors

This list needs to be completed; so far I’ve only included people present at
the ISO meetings collocated with the ICLP (2005, 2006, and 2007) and the
authors of the two drafts cited above, and Richard as I have included here some
contributions from him that I found on the net.

• Bart Demoen (Belgium)

• Jan Wielemaker, (Netherlands)

• Joachim Schimpf (UK)

• Jonathan Hodgson (USA)

• Jose Morales (Spain)

• Katsuhiko Nakamura (Japan)

• Klaus Daessler (Germany)

• Manuel Carro (Spain)

• Mats Carlsson (Sweden)

• Paulo Moura (Portugal)

• Pierre Deransart (France)

• Péter Szabó (Hungary)

• Péter Szeredi (Hungary)

• Richard O’Keefe (NZ)

• Roger Scowen (UK)

• Tony Dodd (UK)

• Ulrich Neumerkel (Austria)

• Vı́tor Santos Costa (Portugal)

1 Scope

This TR is designed to promote the applicability and portability of Prolog gram-
mar rules in data processing systems that support standard Prolog as defined
in ISO/IEC 13211–1:1995. As such, this TR specifies:

a) The representation, syntax, and constraints of Prolog grammar rules

b) A logical expansion of grammar rules into Prolog clauses

2 NORMATIVE REFERENCES 3

c) A set of built-in predicates for parsing with and expanding grammar rules

d) Reference implementations and tests for the specified built-in predicates
and for a grammar rule translator

NOTE — This part of ISO/IEC 13211 will supplement ISO/IEC 13211–1:1995.

2 Normative references

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

3 Definitions

For the purposes of this TR, the following definitions are added to the ones
specified in ISO/IEC 13211–1:

3.1 body (of a grammar-rule): The second argument of a grammar-
rule. A grammar-body-sequence, or a grammar-body-alternative, or a grammar-
body-choice, or a grammar-body-element.

3.2 clause-term: A read-term T. in Prolog text where T does not have
principal functor (:-)/1 nor principal functor (-->)/2.

3.3 definite clause grammar: A sequence of grammar-rules.

3.4 generating (wrt. a definite clause grammar): Backtrackable pro-
ducing legal terminal-sequences of a grammar.

3.5 grammar-body-alternative: A compound term with principal func-
tor (;)/2 and each argument being a body (of a grammar-rule).

3.6 grammar-body-choice: A compound term with principal functor (->)/2.
The first argument is a body (of a grammar-rule), and the second argument is
a grammar-body-alternative.

3.7 grammar-body-element: A cut (the atom !), or a grammar-body-
goal, or a non-terminal, or a terminal-sequence.

3.8 grammar-body-goal: A compound term with principal functor ({})/1
whose argument is a goal.

3.9 grammar-body-sequence: A compound term with principal functor
(,)/2 and each argument being a body (of a grammar-rule).

3 DEFINITIONS 4

3.10 grammar-body-terminals: A terminal-sequence.

3.11 grammar-rule: A compound term with principal functor (-->)/2.

3.12 grammar-rule-term: A read-term T. where T is a grammar-rule.

3.13 head (of a grammar-rule): The first argument of a grammar-rule.
Either a non-terminal (of a grammar), or a compound term whose principal
functor is (,)/2, the first argument is a non-terminal (of a grammar), and the
second argument is a terminal-sequence.

3.14 new variable with respect to a term T: A variable that is not an
element of the variable set of T.

3.15 non-terminal (of a grammar): An atom or compound term that
denotes a non-terminal symbol of the grammar.

3.16 non-terminal indicator: A compound term A//N where A is an atom
and N is a non-negative integer, denoting one particular non-terminal.

3.17 parsing (wrt. a definite clause grammar): Either rejecting ille-
gal or successively accepting and consuming legal terminal-sequences, assigning
them to corresponding non-terminals and obeying constraints by push-back lists.

3.18 terminal (of a grammar): Any Prolog term that denotes a terminal
symbol of the grammar.

3.19 terminal-sequence: A list (cf. ISO/IEC 13211–1, section 6.3.5) whose
first argument, if any, is a terminal (of a grammar), and the second argument
is a terminal-sequence.

3.20 terminal-sequence, comprehensive wrt. a non-terminal: Ter-
minal sequence containing as prefix a terminal-sequence which may be entirely
generated resp. parsed by that non-terminal.

3.21 terminal-sequence, remaining wrt. a non-terminal: Rest of com-
prehensive terminal-sequence having omitted the leading terminal-sequence cor-
responding to the non-terminal.

3.22 variable, new with respect to a term T: See new variable with
respect to a term T.

4 SYMBOLS AND ABBREVIATIONS 5

4 Symbols and abbreviations

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5 Compliance

5.1 Prolog processor

A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which conforms to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

b) Correctly execute Prolog goals which have been prepared for execution
and which conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

c) Reject any Prolog text or read-term whose syntax fails to conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

d) Specify all permitted variations from this TR in the manner prescribed by
this TR and by the ISO/IEC 13211–1, and

e) Offer a strictly conforming mode which shall reject the use of an imple-
mentation specific feature in Prolog text or while executing a goal.

NOTE — This extends corresponding section of ISO/IEC 13211–1.

5.2 Prolog text

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.3 Prolog goal

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

6 SYNTAX 6

5.4 Documentation

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A conforming Prolog processor shall be accompanied by documentation that
completes the definition of every implementation defined and implementation
specific feature specified in this TR and on the ISO/IEC 13211–1 Prolog stan-
dard.

5.5 Extensions

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A processor may support, as an implementation specific feature, any construct
that is implicitly or explicitly undefined in this TR or on the ISO/IEC 13211–1
Prolog standard.

5.5.2 Predefined operators

Please see section 6.3 for the new predefined operators that this TR adds to the
ISO/IEC 13211–1 Prolog standard.

6 Syntax

6.1 Notation

6.1.1 Backus Naur Form

No changes from the ISO/IEC 13211–1 Prolog standard.

6.1.2 Abstract term syntax

The text near the end of this section on the ISO/IEC 13211–1 Prolog standard
is modified as follows:

Prolog text (6.2) is represented abstractly by an abstract list x where x is:

a) d.t where d is the abstract syntax for a directive, and t is Prolog text, or

b) g.t where g is the abstract syntax for a grammar rule, and t is Prolog
text, or

c) c.t where c is the abstract syntax for a clause, and t is Prolog text, or

d) nil, the empty list.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section.

6 SYNTAX 7

6.1.3 Variable names convention for terminal-sequences

This TR uses variables named S0, S1, ..., S to represent the terminal-sequences
used as arguments when processing grammar rules or when expanding grammar
rules into clauses. In this notation, the variables , S1, ..., S can be regarded as a
sequence of states, with S0 representing the initial state and the variable S rep-
resenting the final state. Thus, if the variable Si represents the initial terminal-
sequence, the variable Si+1 will represent the remaining terminal-sequence after
processing Si with a grammar rule.

6.2 Prolog text and data

The first paragraph of this section on ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of read-terms which denote (1) directives, (2) grammar
rules, and (3) clauses of user-defined procedures.

6.2.1 Prolog text

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of directive-terms, grammar-rule terms, and clause-
terms.

prolog text = p text
Abstract: pt pt

p text = directive term , p text
Abstract: d.t d t

p text = grammar rule term , p text
Abstract: g.t g t

p text = clause term , p text
Abstract: c.t c t

p text = ;
Abstract: nil

6.1 Directives

No changes from the ISO/IEC 13211–1 Prolog standard.

6.2 Clauses

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

clause term = term, end
Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (:-)/1
Condition: The principal functor of c is not (-->)/2

7 LANGUAGE CONCEPTS AND SEMANTICS 8

NOTE — Subclauses 7.5 and 7.6 defines how each clause becomes part of the
database.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

6.3 Grammar rules

grammar rule term = term, end
Abstract: gt gt
Priority: 1201
Condition: The principal functor of gt is (-->)/2

grammar rule = grammar rule term
Abstract: g g

NOTE — Section 10 of this TR defines how a grammar rule in Prolog text is
expanded into an equivalent clause when Prolog text is prepared for execution.

6.3 Terms

NOTE — The operator -->/2, specified in section 6.3.4.4 of the ISO/IEC 13211–
1 Prolog standard, is used as the principal functor of grammar rules.

7 Language concepts and semantics

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

7.13 Predicate properties

The following optional property is added to the list of predicate properties:

• expanded from(non terminal, A//N) — The predicate results from the
expansion of a grammar rule for the non-terminal A//N

NOTE — the expanded from/2 property name was chosen in order to account
for other possible, implementation-specific expansions.

7.14 Grammar rules

7.14.1 Terminals and non-terminals

Zero or more terminals are represented by terms contained in lists in order to
distinguish them from non-terminals (string notation may be used as an al-
ternative to lists when terminals are characters; see sections 6.3.7 and 6.4.6 of
ISO/IEC 13211–1). Non-terminals are represented by callable terms.

7 LANGUAGE CONCEPTS AND SEMANTICS 9

NOTE — In the context of a grammar rule, terminals represent words or to-
kens of some language, and non-terminals represent sequences of words (see,
respectively, sections 3.18 and 3.16).

7.14.2 Format of grammar rules

A grammar rule has the format:

GRHead --> GRBody.

A grammar rule is interpreted as stating that its head, GRHead, can be rewritten
by its body, GRBody. The head and the body of grammar rules are constructed
from non-terminals and terminals. The head of a grammar rule is a non-terminal
or the conjunction of a non-terminal and, following, a terminal-sequence (a push-
back list, see 7.14.3):

NonTerminal --> GRBody.

NonTerminal, PushBackList --> GRBody.

The control constructs that may be used on a grammar rule body are described
in section 7.14.6. An empty grammar rule body is represented by an empty list:

GRHead --> [].

The empty list cannot be omitted, i.e. there is no -->/1 form for grammar
rules.

7.14.3 Push-back lists

A push-back list is a terminal-sequence, as an optional second argument of the
head of a grammar rule (see 3.13). A push-back list contains terminals that are
prefixed to the remaining terminal-sequence after successful application of the
grammar rule.

7.14.3.1 Examples

For example, assume that we need rules to look-ahead one or two tokens that
would be consumed next. This could be easily accomplished by the following
two grammar rules:

look_ahead(X), [X] --> [X].
look_ahead(X, Y), [X,Y] --> [X,Y].

When used for parsing, procedurally, these grammar rules can be interpreted
as, respectively, consuming, and then restoring, one or two terminals.

7 LANGUAGE CONCEPTS AND SEMANTICS 10

7.14.4 Non-terminal indicator

A non-terminal indicator is a compound term with the format //(A, N) where
A is an atom and N is a non-negative integer.

The non-terminal indicator //(A, N) indicates the grammar rule non-terminal
whose functor is A and whose arity is N.

NOTES

1 In Prolog text, including ISO/IEC 13211–1 and this TR, a non-terminal
indicator //(A, N) is normally written as A//N.

2 The concept of non-terminal indicator is similar to the concept of pred-
icate indicator defined in sections 3.131 and 7.1.6.6 of the ISO/IEC 13211–1
Prolog. Non-terminal indicators may be used in exception terms thrown when
processing or using grammar rules. In addition, non-terminal indicators may
appear wherever a predicate indicator as defined in ISO/IEC 13211–1 can ap-
pear. Furthermore non-terminal indicators may be used as predicate property
(cf. section 7.13). In particular, using non-terminal indicators in predicate di-
rectives allows the details of the expansion of grammar rules into Prolog clauses
to be abstracted.

7.14.4.1 Examples

For example, given the following grammar rule:

sentence --> noun_phrase, verb_phrase.

The corresponding non-terminal indicator for the grammar rule left-hand side
non-terminal is sentence//0. Assuming a public/1 directive for declaring
predicate scope, we could write:

:- public(sentence//0).

in order to be possible to use grammar rules for the non-terminal sentence//0
outside its encapsulation unit.

7.14.5 Prolog goals in grammar rules

In the body of grammar rules, curly brackets enclose a sequence of Prolog goals
that are executed when the grammar rule, prepared for execution, is processed.

NOTE — The ISO/IEC 13211–1 Prolog standard defines, in section 6.3.6, a
curly bracketed term as a compound term with principal functor ’{}’/1, whose
argument may also be expressed by enclosing its argument in curly brackets.

7 LANGUAGE CONCEPTS AND SEMANTICS 11

7.14.5.1 Examples

Consider, for example, the following grammar rule:

digit(D) --> [C], {0’0 =< C, C =< 0’9, D is C - 0’0}.

This rule recognizes a single terminal as the code of a character representing a
digit when the corresponding numeric value can be unified with the non-terminal
argument.

7.14.6 Control constructs and built-in predicates supported by gram-
mar rules

The following built-in predicates specified in the ISO/IEC 13211–1 Prolog stan-
dard may be used in the body of grammar rules: \+/1.

The following Prolog control constructs specified in the ISO/IEC 13211–1 Pro-
log standard may be used in the body of grammar rules: ’,’/2, ’;’/2, ->/2,
and !/0.

The :/2 control construct specified in the ISO/IEC 13211–2 Prolog standard
may be used in the body of grammar rules (see 11.1.1).

The following Prolog control constructs and built-in predicates derived from con-
trol constructs specified in the ISO/IEC 13211–1 Prolog standard (sections 7.8
and 8.15) shall not be recognized as control constructs when used in a grammar
rule body: true/0, fail/0, repeat/0, call/1, once/1, catch/3, and throw/1.
When appearing in the place of a non-terminal, these Prolog control constructs
and built-in predicates shall be interpreted as non-terminals.

A Prolog implementation may support additional control constructs. Exam-
ples include soft-cuts and control constructs that enable the use of grammar
rules stored on encapsulation units other than modules, such as objects. These
additional control constructs must be treated as non-terminals by a Prolog im-
plementation working on a strictly conforming mode (see 5.1e).

7.14.7 Executing procedures expanded from grammar rules

If a grammar rule prepared for execution has a non-terminal indicator N//A,
and N is the name of the predicate indicator N/A’ of a built-in predicate in the
complete database, the result of expansion and the behaviour of the prepared
grammar rule on execution is implementation dependent. This does not hold
for the built-in predicates defined in 7.14.6.

When the database does not contain a grammar rule with non-terminal indicator
N//A during execution of a non-terminal with non-terminal indicator N//A ,
the error term as specified in clause 7.7.7b of ISO/IEC 13211–1 when the flag
unknown is set to error shall be:

8 BUILT-IN PREDICATES 12

existence_error(procedure, N//A)

NOTES

1 Prolog Processors shall report errors resulting from execution of grammar
rules at the same abstraction level as grammar rules whenever possible.

2 Parsing resp. generating of texts with grammar rules is defined in sections
8.1.1 and 11.2. Grammar rules are expanded into Prolog clauses during prepa-
ration for execution, which maps the parsing or generating with a grammar rule
body into executing a goal given a sequence of predicate clauses. See section
7.7 of ISO/IEC 13211–1 for details.

8 Built-in predicates

8.1 Grammar rule built-in predicates

8.1.1 phrase/3, phrase/2

8.1.1.1 Description

phrase(GRBody, S0, S) is true iff the grammar rule body GRBody successfully
parses resp. generates, according to the currently defined grammar rules, the
comprehensive terminal sequence S0 unifying S with the remaining terminal se-
quence.

Procedurally, phrase(GRBody, S0, S) is executed by calling the Prolog goal
corresponding to the expansion of the grammar rule body GRBody, given the
terminal-sequences S0 and S, according to the logical expansion of grammar
rules described in section 10.

8.1.1.2 Template and modes

phrase(+callable term, ?terminal-sequence, ?terminal-sequence)

8.1.1.3 Errors

a) GRBody is a variable
— instantiation error

b) GRBody is neither a variable nor a callable term
— type error(callable, GRBody)

c) S0 is not a terminal-sequence
— type error(terminal-sequence, S0)

d) S is not a terminal-sequence
— type error(terminal-sequence, S)

8 BUILT-IN PREDICATES 13

8.1.1.4 Bootstrapped built-in predicates

The built-in predicate phrase/2 provides similar functionality to phrase/3.
The goal phrase(GRBody, S0) is true when all terminals in the terminal-sequence
S0 are consumed and recognized resp. generated:

phrase(GRBody, S0) :-
phrase(GRBody, S0, []).

8.1.1.5 Examples

These examples assume that the following grammar rules has been correctly
prepared for execution and are part of the complete database:

determiner --> [the].
determiner --> [a].

noun --> [boy].
noun --> [girl].

verb --> [likes].
verb --> [scares].

sentence --> noun_phrase, verb_phrase.

noun_phrase --> determiner, noun.
noun_phrase --> noun.

verb_phrase --> verb.
verb_phrase --> verb, noun_phrase.

Some example calls of phrase/2 and phrase/3:

| ?- phrase([the], [the]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy, today]).

no

| ?- phrase(sentence, [the, girl, likes]).

9 EVALUABLE FUNCTORS 14

no

| ?- phrase(sentence, Sentence).

Sentence = [the, girl, likes, the, boy]
yes

| ?- phrase(noun_phrase, [the, girl, scares, the, boy], Rest).

Rest = [scares, the, boy]
yes

9 Evaluable functors

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

10 Logical expansion of grammar rules

This section extends, with the specified number, the ISO/IEC 13211–1 Prolog
standard:

This section presents a logical view for the expansion of grammar rules into
Prolog clauses, starting with a description of the used notation.

10.1 Notation

The terms S0 and S represent, respectively, the comprehensive terminal-sequence
and the remaining terminal-sequence after processing a grammar rule. Variables
named Si represent intermediate states, as explained in section 6.1.3.

The term EType(T, Si, Si+1) denotes an expansion of type Type of a term T,
given, respectively, the comprehensive and remaining terminal-sequences Si and
Si+1

Four types of expansion rules are used, denoted by the terms: Erule (expansion
of grammar rules), Ebody (expansion of grammar rule bodies), Eterminals (ex-
pansion of grammar rule terminals), and Enon terminal (expansion of grammar
rule non-terminals).

The symbol ≡ is used to link a expansion rule with its resulting Prolog term or
with another expansion rule.

10.2 Expanding a grammar rule

Grammar rules with a push-back list:

10 LOGICAL EXPANSION OF GRAMMAR RULES 15

Erule((NonTerminal, Terminals --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head
Ebody(GRBody, S0, S1), Eterminals(Terminals, S, S1) ≡ Body

Grammar rule with no push-back list:

Erule((NonTerminal --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head
Ebody(GRBody, S0, S) ≡ Body

10.3 Expanding a non-terminal

Enon terminal(NonTerminal, S0, S) ≡ Head

where:

NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], HeadUniv),
Head =.. HeadUniv

(see section 11.3 for the definition of the auxiliary predicate append/3)

10.4 Expanding a terminal-sequence

Terminal-sequences, either a push-back list or a grammar rule body goal:

Eterminals([], S0, S) ≡ S0 = S
Eterminals([T| Ts], S0, S) ≡ S0 = [T| Tail]

where:

Eterminals(Ts, S1, S) ≡ Tail

where S1 is a new variable with respect to the term [T| Ts].

An alternative definition, given a terminal-sequence Terminals is:

Eterminals(Terminals, S0, S) ≡ S0 = List

where:

append(Terminals, S, List)

(see section 11.3 for the definition of the auxiliary predicate append/3)

10 LOGICAL EXPANSION OF GRAMMAR RULES 16

10.5 Expanding a grammar rule body

Non-instantiated variable on a grammar rule body:

Ebody(Var, S0, S) ≡ phrase(Var, S0, S)

If-then-else construct on the body of a grammar rule:

Ebody((GRIf -> GRThen; GRElse), S0, S) ≡ If -> Then; Else

where:

Ebody(GRIf, S0, S1) ≡ If
Ebody(GRThen, S1, S) ≡ Then
Ebody(GRElse, S0, S) ≡ Else

If-then construct on the body of a grammar rule:

Ebody((GRIf -> GRThen), S0, S) ≡ If -> Then

where:

Ebody(GRIf, S0, S1) ≡ If
Ebody(GRThen, S1, S) ≡ Then

Disjunction on the body of a grammar rule:

Ebody((GREither; GROr), S0, S) ≡ Either; Or

where:

Ebody(GREither, S0, S) ≡ Either
Ebody(GROr, S0, S) ≡ Or

Conjunction on the body of a grammar rule:

Ebody((GRFirst, GRSecond), S0, S) ≡ First, Second

where:

Ebody(GRFirst, S0, S1) ≡ First
Ebody(GRSecond, S1, S) ≡ Second

Cut on the body of a grammar rule:

Ebody(!, S0, S) ≡ !, S0 = S

11 REFERENCE IMPLEMENTATIONS 17

Curly-bracketed term on the body of a grammar rule:

Ebody({}, S0, S) ≡ S0 = S
Ebody({Goal}, S0, S) ≡ Goal, S0 = S

when Goal is a non-variable term and:

Ebody({Goal}, S0, S) ≡ call(Goal), S0 = S

when Goal is a Prolog variable.

Negation on the body of a grammar rule:

Ebody(\+ Body, S0, S) ≡ \+ Goal, S0 = S

where:

Ebody(Body, S0, S) ≡ Goal

Terminal-sequence in the body of a grammar rule:

Ebody(Terminals, S0, S) ≡ Eterminals(Terminals, S0, S)

Non-terminal on the body of a grammar rule:

Ebody(NonTerminal, S0, S) ≡ Enon terminal(NonTerminal, S0, S)

11 Reference implementations

The reference implementations provided is this section do not preclude alterna-
tive or optimized implementations.

11.1 Grammar-rule translator

This section provides a reference implementation for a translator of grammar
rules into Prolog clauses as specified in the ISO/IEC 13211–1 Prolog standard.
The main idea is to translate grammar rules into clauses by adding two extra
arguments to each grammar rule non-terminal, following the logical expansion
of grammar rules, described in the previous section. The first extra argument
is used for the comprehensive terminal-sequence. The second extra argument is
used for the remaining terminal-sequence. This is a straight-forward solution.
Nevertheless, compliance with this TR does not imply this specific translation
solution, only compliance with the logical expansion, as specified in section 10.

This translator includes error-checking code that ensures that both the input
grammar rule and the resulting clause are valid. In addition, this translator at-
tempts to simplify the resulting clauses by removing redundant calls to true/0

11 REFERENCE IMPLEMENTATIONS 18

and by folding unifications. In some cases, the resulting clauses could be further
optimized. Other optimizations can be easily plugged in, by modifying or ex-
tending the dcg simplify/4 predicate. However, implementers must be careful
to delay output unifications in the presence of goals with side-effects such as
cuts or input/output operations, ensuring the steadfastness of the generated
clauses.

% converts a grammar rule into a normal clause:

dcg_rule(Rule, Clause) :-
dcg_rule(Rule, S0, S, Expansion),
dcg_simplify(Expansion, S0, S, Clause).

dcg_rule((RHead --> _), _, _, _) :-
var(RHead),
throw(instantiation_error).

dcg_rule((RHead, _ --> _), _, _, _) :-
var(RHead),
throw(instantiation_error).

dcg_rule((_, Terminals --> _), _, _, _) :-
var(Terminals),
throw(instantiation_error).

dcg_rule((NonTerminal, Terminals --> GRBody), S0, S, (Head :- Body)) :-
!,
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S1, Goal1),
dcg_terminals(Terminals, S, S1, Goal2),
Body = (Goal1, Goal2).

dcg_rule((NonTerminal --> GRBody), S0, S, (Head :- Body)) :-
!,
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S, Body).

dcg_rule(Term, _, _, _) :-
throw(type_error(grammar_rule, Term)).

% translates a grammar goal non-terminal:

dcg_non_terminal(NonTerminal, _, _, _) :-
\+ callable(NonTerminal),

11 REFERENCE IMPLEMENTATIONS 19

throw(type_error(callable, NonTerminal)).

dcg_non_terminal(NonTerminal, S0, S, Goal) :-
NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], GoalUniv),
Goal =.. GoalUniv.

% translates a terminal-sequence:

dcg_terminals(Terminals, _, _, _) :-
\+ is_proper_list(Terminals),
throw(type_error(list, Terminals)).

dcg_terminals(Terminals, S0, S, S0 = List) :-
append(Terminals, S, List).

% translates a grammar rule body:

dcg_body(Var, S0, S, phrase(Var, S0, S)) :-
var(Var),
!.

dcg_body((GRIf -> GRThen), S0, S, (If -> Then)) :-
!,
dcg_body(GRIf, S0, S1, If),
dcg_body(GRThen, S1, S, Then).

dcg_body((GREither; GROr), S0, S, (Either; Or)) :-
!,
dcg_body(GREither, S0, S, Either),
dcg_body(GROr, S0, S, Or).

dcg_body((GRFirst, GRSecond), S0, S, (First, Second)) :-
!,
dcg_body(GRFirst, S0, S1, First),
dcg_body(GRSecond, S1, S, Second).

dcg_body(!, S0, S, (!, S0 = S)) :-
!.

dcg_body({}, S0, S, (S0 = S)) :-
!.

dcg_body({Goal}, S0, S, (call(Goal), S0 = S)) :-

11 REFERENCE IMPLEMENTATIONS 20

var(Goal),
!.

dcg_body({Goal}, _, _, _) :-
\+ callable(Goal),
throw(type_error(callable, Goal)).

dcg_body({Goal}, S0, S, (Goal, S0 = S)) :-
!.

dcg_body(\+ GRBody, S0, S, (\+ Goal, S0 = S)) :-
!,
dcg_body(GRBody, S0, S, Goal).

dcg_body([], S0, S, (S0=S)) :-
!.

dcg_body([T| Ts], S0, S, Goal) :-
!,
dcg_terminals([T| Ts], S0, S, Goal).

dcg_body(NonTerminal, S0, S, Goal) :-
dcg_non_terminal(NonTerminal, S0, S, Goal).

% simplifies the resulting clause:

dcg_simplify((Head :- Body), _, _, Clause) :-
dcg_conjunctions(Body, Flatted),
dcg_fold_left(Flatted, FoldedLeft),
dcg_fold_pairs(FoldedLeft, FoldedPairs),
(FoldedPairs == true ->

Clause = Head
; Clause = (Head :- FoldedPairs)
).

% removes redundant calls to true/0 and flattens conjunction of goals:

dcg_conjunctions((Goal1 -> Goal2), (SGoal1 -> SGoal2)) :-
!,
dcg_conjunctions(Goal1, SGoal1),
dcg_conjunctions(Goal2, SGoal2).

dcg_conjunctions((Goal1; Goal2), (SGoal1; SGoal2)) :-
!,

11 REFERENCE IMPLEMENTATIONS 21

dcg_conjunctions(Goal1, SGoal1),
dcg_conjunctions(Goal2, SGoal2).

dcg_conjunctions(((Goal1, Goal2), Goal3), Body) :-
!,
dcg_conjunctions((Goal1, (Goal2, Goal3)), Body).

dcg_conjunctions((true, Goal), Body) :-
!,
dcg_conjunctions(Goal, Body).

dcg_conjunctions((Goal, true), Body) :-
!,
dcg_conjunctions(Goal, Body).

dcg_conjunctions((Goal1, Goal2), (Goal1, Goal3)) :-
!,
dcg_conjunctions(Goal2, Goal3).

dcg_conjunctions(\+ Goal, \+ SGoal) :-
!,
dcg_conjunctions(Goal, SGoal).

dcg_conjunctions(Goal, Goal).

% folds left unifications:

dcg_fold_left((Term1 = Term2), true) :-
!,
Term1 = Term2.

dcg_fold_left(((Term1 = Term2), Goal), Folded) :-
!,
Term1 = Term2,
dcg_fold_left(Goal, Folded).

dcg_fold_left(Goal, Goal).

% folds pairs of consecutive unifications (T1 = T2, T2 = T3):

dcg_fold_pairs((Goal1 -> Goal2), (SGoal1 -> SGoal2)) :-
!,
dcg_fold_pairs(Goal1, SGoal1),
dcg_fold_pairs(Goal2, SGoal2).

11 REFERENCE IMPLEMENTATIONS 22

dcg_fold_pairs((Goal1; Goal2), (SGoal1; SGoal2)) :-
!,
dcg_fold_pairs(Goal1, SGoal1),
dcg_fold_pairs(Goal2, SGoal2).

dcg_fold_pairs(((T1 = T2a), (T2b = T3)), (T1 = T3)) :-
T2a == T2b,
!.

dcg_fold_pairs(((T1 = T2a), (T2b = T3), Goal), ((T1 = T3), Goal2)) :-
T2a == T2b,
!,
dcg_fold_pairs(Goal, Goal2).

dcg_fold_pairs((Goal1, Goal2), (Goal1, Goal3)) :-
!,
dcg_fold_pairs(Goal2, Goal3).

dcg_fold_pairs(\+ Goal, \+ SGoal) :-
!,
dcg_fold_pairs(Goal, SGoal).

dcg_fold_pairs(Goal, Goal).

11.1.1 Extended version for Prolog compilers with encapsulation
mechanisms

Assuming that the infix operator :/2 is used for calling predicates inside an
encapsulation unit, the following clause would allow translation of grammar
rule bodies that explicitly use non-terminals from another encapsulation unit:

dcg_body(Unit:GRBody, S0, S, Unit:Goal) :-
!,
dcg_body(GRBody, S0, S, Goal).

One possible problem with this clause is that any existence errors when execut-
ing the goal Unit:Goal will most likely be expressed in terms of the expanded
predicates and not in terms of the original grammar rule non-terminals. In order
to more easily report errors at the same abstraction level as grammar rules, the
following alternative clause may be used:

dcg_body(Unit:GRBody, S0, S, Unit:phrase(GRBody, S0, S)) :-
!,
dcg_body(GRBody, S0, S, _). % ensure that GRBody is valid

11 REFERENCE IMPLEMENTATIONS 23

11.2 phrase/3

This section provides a reference implementation in Prolog of the built-in predi-
cates phrase/3. It includes the necessary clauses for error handling, as specified
in section 8.1.1.3. For the reference implementation of phrase/2 see section
8.1.1.4.

phrase(GRBody, S0, S) :-
var(GRBody),
throw(error(instantiation_error, phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
\+ callable(GRBody),
throw(error(type_error(callable, GRBody), phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
nonvar(S0),
\+ is_list(S0),
throw(error(type_error(list, S0), phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
nonvar(S),
\+ is_list(S),
throw(error(type_error(list, S), phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
dcg_body(GRBody, TS0, TS, Goal),
TS0 = S0, TS = S,
call(Goal).

The predicate dcg body/4 is part of the grammar rule translator reference im-
plementation, defined in section 11.1. An alternative, informal implementation
of phrase/3 using a meta-interpreter is presented in the Annex A.

11.3 Auxiliary predicates used on the reference imple-
mentations

The following auxiliary predicates are used on the reference implementations:

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).

callable(Term) :-
nonvar(Term),
functor(Term, Functor, _),
atom(Functor).

12 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 24

is_list([]) :-
!.

is_list([_| Tail]) :-
is_list(Tail).

is_proper_list(List) :-
List == [], !.

is_proper_list([_| Tail]) :-
nonvar(Tail),
is_proper_list(Tail).

12 Test-cases for the reference implementations

12.1 Built-in predicates and user-defined hook predicates

% built-in predicates:
gr_pred_test(phrase(_, _,_), [built_in, static]).
gr_pred_test(phrase(_, _), [built_in, static]).

% simple test predicate:
test_gr_preds :-

write(’Testing existence of built-in predicates’), nl,
write(’and user-defined hook predicates...’), nl, nl,
gr_pred_test(Pred, ExpectedProps),
functor(Pred, Functor, Arity),
write(’Testing predicate ’), write(Functor/Arity), nl,
write(’ Expected properties: ’), write(ExpectedProps), nl,
findall(Prop, predicate_property(Pred, Prop), ActualProps),
write(’ Actual properties: ’), write(ActualProps), nl,
fail.

test_gr_preds.

12.2 phrase/2-3 built-in predicate tests

Tests needed!

12.3 Grammar-rule translator tests

Know any hard to translate grammar rules? Contribute them!

When checking compliance of a particular grammar rule translator, results of the
tests in this section must be compliant with the logical expansion of grammar
rules, as specified in section 10.

12 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 25

% terminal tests with list notation:
gr_tr_test(101, (p --> []), success).
gr_tr_test(102, (p --> [b]), success).
gr_tr_test(103, (p --> [abc, xyz]), success).
gr_tr_test(104, (p --> [abc | xyz]), error).
gr_tr_test(105, (p --> [[], {}, 3, 3.2, a(b)]), success).
gr_tr_test(106, (p --> [_]), success).

% terminal tests with string notation:
gr_tr_test(151, (p --> "b"), success).
gr_tr_test(152, (p --> "abc", "q"), success).
gr_tr_test(153, (p --> "abc" ; "q"), success).

% simple non-terminal tests:
gr_tr_test(201, (p --> b), success).
gr_tr_test(202, (p --> 3), error).
gr_tr_test(203, (p(X) --> b(X)), success).

% conjunction tests:
gr_tr_test(301, (p --> b, c), success).
gr_tr_test(311, (p --> true, c), success).
gr_tr_test(312, (p --> fail, c), success).
gr_tr_test(313, (p(X) --> call(X), c), success).

% disjunction tests:
gr_tr_test(351, (p --> b ; c), success).
gr_tr_test(352, (p --> q ; []), success).
gr_tr_test(353, (p --> [a] ; [b]), success).

% if-then-else tests:
gr_tr_test(401, (p --> b -> c), success).
gr_tr_test(411, (p --> b -> c; d), success).
gr_tr_test(421, (p --> b -> c1, c2 ; d), success).
gr_tr_test(422, (p --> b -> c ; d1, d2), success).
gr_tr_test(431, (p --> b1, b2 -> c ; d), success).
gr_tr_test(441, (p --> [x] -> [] ; q), success).

% negation tests:
gr_tr_test(451, (p --> \+ b, c), success).
gr_tr_test(452, (p --> b, \+ c, d), success).

% cut tests:
gr_tr_test(501, (p --> !, [a]), success).
gr_tr_test(502, (p --> b, !, c, d), success).
gr_tr_test(503, (p --> b, !, c ; d), success).
gr_tr_test(504, (p --> [a], !, {fail}), success).

12 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 26

gr_tr_test(505, (p(a), [X] --> !, [X, a], q), success).
gr_tr_test(506, (p --> a, ! ; b), success).

% {}/1 tests:
gr_tr_test(601, (p --> {b}), success).
gr_tr_test(602, (p --> {3}), error).
gr_tr_test(603, (p --> {c,d}), success).
gr_tr_test(604, (p --> ’{}’((c,d))), success).
gr_tr_test(605, (p --> {a}, {b}, {c}), success).
gr_tr_test(606, (p --> {q} -> [a] ; [b]), success).
gr_tr_test(607, (p --> {q} -> [] ; b), success).
gr_tr_test(608, (p --> [foo], {write(x)}, [bar]), success).
gr_tr_test(609, (p --> [foo], {write(hello)},{nl}), success).
gr_tr_test(610, (p --> [foo], {write(hello), nl}), success).

% "metacall" tests:
gr_tr_test(701, (p --> X), success).
gr_tr_test(702, (p --> _), success).

% non-terminals corresponding to "graphic" characters
% or built-in operators/predicates:
gr_tr_test(801, (’[’ --> b, c), success).
gr_tr_test(802, (’=’ --> b, c), success).

% pushback tests:
gr_tr_test(901, (p, [t] --> b, c), success).
gr_tr_test(902, (p, [t] --> b, [t]), success).
gr_tr_test(903, (p, [t] --> b, [s, t]), success).
gr_tr_test(904, (p, [t] --> b, [s], [t]), success).
gr_tr_test(905, (p(X), [X] --> [X]), success).
gr_tr_test(906, (p(X, Y), [X, Y] --> [X, Y]), success).
gr_tr_test(907, (p(a), [X] --> !, [X, a], q), success).
gr_tr_test(908, (p, [a,b] --> [foo], {write(hello), nl}), success).
gr_tr_test(909, (p, [t1], [t2] --> b, c), error).
gr_tr_test(910, (p, b --> b), error).
gr_tr_test(911, ([t], p --> b), error).
gr_tr_test(911, ([t1], p, [t2] --> b), error).

% simple expand_term/2 test predicate:

test_gr_tr :-
write(’Testing expand_term/2 predicate...’), nl, nl,
gr_tr_test(N, GR, Result),
write(N), write(’: ’), writeq(GR), write(’ --- ’),
write(Result), write(’ expected’), nl,

A PHRASE/3 META-INTERPRETER 27

(catch(
expand_term(GR, Clause),
Error,
(write(’ error: ’), write(Error), nl, fail)) ->

write(’ ’), writeq(Clause)
; write(’ expansion failed!’)
),
nl, nl,
fail.

test_gr_tr.

% simple predicate for dumping test grammar rules into a file:
% (restricted to rules whose expansion is expected to succeed)

create_gr_file :-
write(’Creating grammar rules file "gr.pl" ...’),
open(’gr.pl’, write, Stream),
(gr_tr_test(N, GR, success),

write(Stream, ’% ’), write(Stream, N),
write(Stream, ’:’), nl(Stream),
write_canonical(Stream, GR), write(Stream, ’.’),
nl(Stream), fail

; close(Stream)
),
write(’ created.’), nl.

A phrase/3 meta-interpreter

Note that this alternative reference implementation makes it simple to report
existence errors at the same abstraction level as grammar rules.

phrase(GRBody, S0, S) :-
phrase(GRBody, Cont, S0, S1),
(Cont == {} ->

S = S1
; Cont = !(SBody),

!,
phrase(SBody, S1, S)

).

phrase(GRBody, _, S0, S) :-
var(GRBody),
throw(error(instantiation_error, phrase(GRBody, S0, S))).

A PHRASE/3 META-INTERPRETER 28

phrase(GRBody, _, S0, S) :-
\+ callable(GRBody),
throw(error(type_error(callable, GRBody), phrase(GRBody, S0, S))).

phrase(GRBody, _, S0, S) :-
nonvar(S0),
\+ is_list(S0),
throw(error(type_error(list, S0), phrase(GRBody, S0, S))).

phrase(GRBody, _, S0, S) :-
nonvar(S),
\+ is_list(S),
throw(error(type_error(list, S), phrase(GRBody, S0, S))).

phrase(!, Cont, S0, S) :-
!,
Cont = !({}),
S = S0.

phrase((GRBody1, GRBody2), Cont, S0, S) :-
!,
phrase(GRBody1, ContGRBody1, S0, S1),
(ContGRBody1 == {} ->

phrase(GRBody2, Cont, S1, S)
; ContGRBody1 = !(SGRBody1),

Cont = !((SGRBody1, GRBody2)),
S = S1

).

phrase(\+ GRBody, Cont, S0, S) :-
!,
\+ phrase(GRBody, S0, S),
Cont = {},
S0 = S.

phrase((GRBody1; GRBody2), Cont, S0, S) :-
!,
(phrase(GRBody1, Cont, S0, S)
; phrase(GRBody2, Cont, S0, S)
).

phrase((GRBody1 -> GRBody2), Cont, S0, S) :-
!,
phrase(GRBody1, S0, S1),
phrase(GRBody2, Cont, S1, S).

A PHRASE/3 META-INTERPRETER 29

phrase({}, Cont, S0, S) :-
!,
Cont = {},
S = S0.

phrase({Goal}, Cont, S0, S) :-
!,
call(Goal),
Cont = {},
S = S0.

phrase([], Cont, S0, S) :-
!,
Cont = {},
S = S0.

phrase([Head| Tail], Cont, S0, S) :-
!,
append([Head| Tail], S, S0),
Cont = {}.

phrase(GRHead, _, S0, S) :-
\+ dcg_clause(GRHead --> _),
current_prolog_flag(unknown, Value),
(Value == fail ->

fail
; Value == warning ->

% implementation-defined warning
; functor(GRHead, NonTerminal, Arity),

throw(error(
existence_error(procedure, NonTerminal//Arity),
phrase(GRHead, S0, S)))

).

phrase(GRHead, {}, S0, S) :-
dcg_clause(GRHead, GRBody),
phrase(GRBody, ContY, S0, S1),
(ContY == {} ->

S = S1
; ContY = !(SBody),

!,
phrase(SBody, S1, S)

).

	Introduction
	Previous editors and draft documents
	Contributors

	Scope
	Normative references
	Definitions
	Symbols and abbreviations
	Compliance
	Prolog processor
	Prolog text
	Prolog goal
	Documentation
	Extensions
	Predefined operators

	Syntax
	Notation
	Backus Naur Form
	Abstract term syntax
	Variable names convention for terminal-sequences

	Prolog text and data
	Prolog text

	Terms

	Language concepts and semantics
	Predicate properties
	Grammar rules
	Terminals and non-terminals
	Format of grammar rules
	Push-back lists
	Non-terminal indicator
	Prolog goals in grammar rules
	Control constructs and built-in predicates supported by grammar rules
	Executing procedures expanded from grammar rules

	Built-in predicates
	Grammar rule built-in predicates
	phrase/3, phrase/2

	Evaluable functors
	Logical expansion of grammar rules
	Notation
	Expanding a grammar rule
	Expanding a non-terminal
	Expanding a terminal-sequence
	Expanding a grammar rule body

	Reference implementations
	Grammar-rule translator
	Extended version for Prolog compilers with encapsulation mechanisms

	phrase/3
	Auxiliary predicates used on the reference implementations

	Test-cases for the reference implementations
	Built-in predicates and user-defined hook predicates
	phrase/2-3 built-in predicate tests
	Grammar-rule translator tests

	phrase/3 meta-interpreter

