A formula for the sign of a permutation

There is a useful formula for the sign of a permutation that is not among the theorems of Chapter 5 (although it probably appears among the exercises someplace). The purpose of this handout is to state and prove this formula.

Definition. Let \(\sigma \in S_N \). The **sign** of \(\sigma \), denoted \((-1)^\sigma \), is defined to be

\[
(-1)^\sigma := \begin{cases}
1, & \text{if } \sigma \text{ is an even permutation,} \\
-1, & \text{if } \sigma \text{ is an odd permutation.}
\end{cases}
\]

The definition and notation above are standard; for the purposes of this handout, I want to introduce the following nonstandard notation. Let

\[
E(\sigma) := \text{the number of even-length disjoint cycles in } \text{DCF}(\sigma); \quad \text{and}
\]

\[
O(\sigma) := \text{the number of odd-length disjoint cycles in } \text{DCF}(\sigma).
\]

\[
T(\sigma) := \text{the total number of disjoint cycles in the factorization of } \sigma.
\]

Obviously, \(E(\sigma) + O(\sigma) = T(\sigma) \). Note that you include fixed points, which are cycles of length one, when computing \(O(\sigma) \) and in \(T(\sigma) \). Thus, for example, if \(\sigma \in S_{11} \) has disjoint cycle factorization

\[
\sigma = (1, 2)(3, 4, 5)(6, 7, 8, 9)(10)(11),
\]

then \(E(\sigma) = 2, O(\sigma) = 3, \) and \(T(\sigma) = 5 \).

Next, I need to make some preliminary observations; I’ll gather them together into the proposition below.

Proposition 1.

[i], for any integers \(n \) and \(k \),

\[
n \equiv k \pmod{2} \implies (-1)^n = (-1)^k;
\]

[ii], for any integer \(n \),

\[
(-1)^n = (-1)^{-n};
\]

[iii],

\[
O(\sigma) \equiv n \pmod{2}.
\]

Proof.

[i]: We’re given \(n \equiv k \pmod{2} \), so \(n - k = 2\ell \) for some integer \(\ell \). But then

\[
\frac{(-1)^n}{(-1)^k} = (-1)^{n-k} = (-1)^{2\ell} = ((-1)^2)^\ell = 1^\ell = 1.
\]

[ii]: This is a special case of [i].

[iii]: Note that

\[
n = \sum_{\text{all cycles}} \text{(length of cycle)} = \sum_{\text{even-length cycles}} \text{(length of cycle)} + \sum_{\text{odd-length cycles}} \text{(length of cycle)}. \tag{A} \tag{B}
\]

Now, sum (A), being a sum of even numbers, is even; so \(n \) must be congruent to sum (B) \(\pmod{2} \). But (B) is a sum of odd numbers; so sum (B) is odd if and only if the number of terms in the sum—which is \(O(\sigma) \)—is odd. Thus,

\[
n \text{ is } \begin{cases} \text{even} \implies \text{sum(B) is even} \implies O(\sigma) \text{ is even} \end{cases} \]

\[
n \text{ is } \begin{cases} \text{odd} \implies \text{sum(B) is odd} \iff O(\sigma) \text{ is odd} \end{cases} \]

\[\blacksquare\]
As a final preliminary, I want to break off the first step in the proof of the theorem as Proposition 2. That will allow the proof of the theorem to be an uninterrupted flowing computation.

Proposition 2. $(-1)^\sigma = (-1)^{E(\sigma)}$.

Proof. Since even-length cycles are odd permutations and vice-versa, σ is an \{even\} permutation if and only if the number of even-length cycles in $DCF(\sigma)$ is an \{even\} number—that is, if and only if $E(\sigma)$ is an \{even\} number. ■

I am now ready to state and prove the theorem.

Theorem. Let $\sigma \in S_n$. With the notation as above,

$$(-1)^\sigma = (1)^{n-T(\sigma)}.$$

Proof. The proof is the following computation:

\[(-1)^\sigma \]

by Proposition 2 $\rightarrow= (-1)^{E(\sigma)}$

since $E(\sigma) + O(\sigma) = T(\sigma)$ $\rightarrow= (-1)^{T(\sigma) - O(\sigma)}$

by Proposition 1, parts [i] and [iii] $\rightarrow= (-1)^{T(\sigma) - n}$

by Proposition 1, part [ii] $\rightarrow= (-1)^{n - T(\sigma)}$. ■