Eighteen Short Proofs

1. Let \(x, y \in \mathbb{R} \). If \(xy > 0 \) and \(x + y > 0 \), then \(x > 0 \) and \(y > 0 \).
2. There are no integers \(m \) and \(n \) such that \(9n - 6 = 27m \).
3. Let \(A \) and \(B \) be sets. If \(B \subseteq A \), then \(A \cup B = A \).
4. Let \(R \) be the relation from \(\mathbb{R} \) to \(\mathbb{R} \times \mathbb{R} \) defined by \(xR(y, z) \) if \(x = y \). Then
 (a) \(R \) is not a function.
 (b) \(R^{-1} \) is a function.
5. There exists no largest negative real number.
6. The function \(f: \mathbb{Z} \to \mathbb{N} \) given by \(f(n) = |n| + 1 \) is not a bijection.
7. The open interval \((3, 6)\) is uncountable. (You may assume that \((0, 1)\) is uncountable.)
8. The sum of the smallest \(n \) odd positive numbers equals \(n^2 \).
9. Let \(x, y \in \mathbb{Z} \). Then \(xy \) is even if and only if \(x \) is even or \(y \) is even.
10. Let \(R \) be the relation defined on \(\mathbb{Z} \times \mathbb{Z} \) by \((a, b)R(c, d)\) if \(a = c \). Then \(R \) is an equivalence relation. (What are its equivalence classes?)
11. Let \(f: A \to A \) be a function. Then \(f \circ i_A = i_A \circ f = f \), where \(i_A \) is the identity function on \(A \).
12. Let \(x, y, n \in \mathbb{Z} \) and let \(n \geq 2 \). If \(x \equiv y \pmod{n} \), then for all \(k \in \mathbb{N} \), \(kx \equiv ky \pmod{nk} \).
13. Let \(A \) and \(B \) be sets. If \(A \) and \(B \) are denumerable, then \(A \) and \(B \) are numerically equivalent.
14. For all \(n \in \mathbb{N} \), \(6 \mid (7^n - 1) \).
15. There exists no irrational number whose square root is rational.
16. Every finite nonempty set of real numbers has a largest element. (Hint: Use induction on the size of the set.)
17. Let \(A \) be a nonempty set and let \(f: A \to \mathcal{P}(A) \) be the function \(f(x) = \{x\} \). Then \(f \) is an injection but not a surjection.
18. The function \(f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\} \) defined by \(f(x) = \frac{2x - 1}{x - 1} \) is a bijection.