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Around the sixth century BC, the ancient Greeks discovered a se@rgly mystical
correspondence between musical intervals with a pleasing souart ratios of whole
numbers: the principal tones of a musical scale are produced lrgtfing a string at points
that divide its length into simple ratios. Although it would take more than two millenia for
this phenomenon to be fully explained, an association betweenusical harmony and
proportions was rmly established in Western thought. The an@nts believed musical
harmony to be a compelling demonstration of mathematical ost in the universe|indeed,
through medieval times, the study of proportions was closelynlked to the study of music.

The fact that scholars in ancient India made signi cant matheratical discoveries while
analyzing the rhythms, ormeters of poetry has been largely overlooked in the West. In
English, a meter is a pattern of stressed and unstressed syllables. Eaample,
Shakespeare's plays are written in a meter callédmbic pentameter ve pairs of

alternating unstressed and stressed syllables to a line. In Sanskiie classical language of
India, a meter is a pattern of short and long syllables that dictes the rhythm of a poem.
While there are only about a dozen English meters, there are hdireds of meters in
Sanskrit. Many meters are associated with speci ¢ religious uaéls.

What would a catalog of all possible meters look like? Of coursiéwould be in nitely
large; the challenge is to come up with a nite set of instructios|an algorithm|that
generates all viable patterns. How can we check that every meteelongs somewhere in
this catalog? Is there a shorthand we can use to remember a medi pattern? Indian
scholars answered these questions in ingenious ways.

The search for ways to list and classify meters led to important nilaematical discoveries:
Pascal's triangle, the Fibonacci numbers, and even the rudimis of the binary number
system. The discoveries of these structures in India predated g®in the West, sometimes
by several centuries. They used recursion and iteration|essentiacomputer programming
techniques|to generate lists of rhythms. The fact that several aithors solved the same
problems in di®erent ways reveals the depth of Indian mathetical development at the
time. Their discoveries also apply to rhythm patterns in tradiional and popular music.

The binary representation of meter

Several features of Sanskrit poetry are particularly matheatical. Sanskrit meters are
patterns of long @Quru) and short (laghu) syllables, with a long syllable having twice the
length of a short one (in English, syllables have no numerical ). Sanskrit meters fall
into two categories: meters in which the number of syllables ia line are xed, and meters



in which the duration of a line is xed, but not the number of sylables. This distinction
naturally raises several mathematical questions.

Pingala is credited with the rst work on prosody, the systematicstudy of meter. We know
very little about him. Some modern scholars think he lived artnd 500 BC and was the
nephew of the great Sanskrit grammarian Panini; others clairhe lived around 200 BC.
The earliest de nitive reference to his writing comes in thehird century AD [11].

Moreover, it is not clear whether the works attributed to himwere written by the same
person, or whether, as in the case of Pythagoras, some were writtay his followers.
Pingala's writings took the form of short, cryptic verses, ositras, which served as memory
aids for a larger set of concepts passed on orally.

We rely on medieval commentators for much of the interpretan of Pingala's work. They
include Hakyudha (13th century) and Kedara Bhatt (8th certury). Bhatt solves the same
problems Pingala does, but uses such di®erent methods that modscholars disagree on
whether or not his works are commentaries on Pingald], 5].

Pingala studied meters with a xed number of syllables. It is easip discover by
experimentation that there are two meters of one syllable, fm meters of two syllables, and
eight meters of three syllables (Western prosodists stopped heréisting meters for any
number of syllables is more of a challenge.

Pingala's sitras address four problems:

Problem 1. How can we systematically list all the patterns oh syllables for

any n?

Problem 2. Suppose a pattern is erased from this list. How can we recover the
missing pattern?

Problem 3. Given any pattern, how can we nd its position on the list

without recreating the entire list?

Problem 4. What is the total number of patterns of n syllables?

Problem 1: listing the patterns of n syllables.

Pingala gave instructions on how to list the patterns ofh syllables in a table he called
pras@ra, or expansion. Pingala's rstsitra states that the expansion of one syllable has
two elements (a long syllable and a short syllable, representeg the letters sand |,
respectively). His seconddtra observes that the expansion of two syllables is the
one-syllable expansion \mixed with itself." That is, \mix" Sandwith Sto get SSandls;



1S 1 sS 1 SSS 1 SSSS | 9 ss§
2 1 2 1S 2 1SS 2 1SSS | 10 1891
3 3l 3 SIS 3 SIss | 11 sisl

4 1 4 IS 4 USS 12 usi

5 SsI 5 SSIS | 13 ssiu

6 18l 6 ISIS 14 150

7 sl 7 SIS 15 sl

8 8 s 16 1

Figure 1. Expansions of one-, two-, three-, and four-syllablaeters, with indices

mix Sand|with Ito get Slandll. To get the three-syllable expansion, appengito the end of
the two-syllable expansion, then do the same for The nal gditra states that there are
eight patterns of three syllables. Presumably, we are to agaimmbine the three-syllable
patterns separately withsand 1to get the expansion of four-syllable patterns. These
instructions generalize to any length of pattern. Prastra®f one through four syllables are
shown in Figurel.

Kedara Bhatt gives an completely di®erent algorithm that mnetheless generates the list of
n-syllable patterns in the same order Pingala use$], 5]. The rst pattern on the list
consists ofn long syllables. Suppose you are given any pattern on the list (fexample,
11S1SSSS). To get the next pattern, start from the left by writing long syllables:

When you reach the position of the rst long syllable in the prewus pattern, write a short
syllable:

Then recopy the rest of the previous pattern:
I N )
S § 1 1 3
The list ends with the pattern of all short syllables (without this stipulation, the list
repeats in an in nite loop, since applying the algorithm to tke pattern of n short syllables
produces the pattern ofn long syllables).

Pingala's algorithm follows naturally from the observationthat the list of (nj 1)-syllable
patterns is nested (twice) within the list of n-syllable patterns. Bhatt's algorithm is less



obvious; it is perhaps easiest to derive from the routine desced in his solution to
Problem 3 (discussed below).

Combinatorial sequence generatiois the process of systematically listing structures with a
given property. Computer-science guru Donald E. Knuth creth Sanskrit prosodists with
\the rst-ever explicit algorithm for combinatorial sequene generation" fi]. A signi cant
di®erence between the two writers is that Bhatt's algorithms iterative|that is, it gives
instructions to get from one pattern on the list to the next|whi le Pingala's algorithm is
recursivelit generates the entire list of n-syllable patterns from the list of (1 1)-syllable
patterns, so that the list of patterns of any given length may be enerated by repeatedly
invoking the same routine. Both iteration and recursion are fadamental computer
programming techniques. A fascination with recursion appeais Indian art and religion
from ancient times. For example, the medieval Kandariya Maldeva temple (gure 2)
contains several miniature copies of itself.

Problem 2: recovering a lost pattern.

Suppose a pattern is erased from the list. How can we recover it iitut having to
regenerate the entire list? Bhatt does not address this prolste as his algorithm generates
the missing row from the previous pattern. However, this is a seus problem for Pingala.

Pingala's pattern recovery algorithm assumes that we know thgosition of the missing
pattern, which we will call its index (see Figurel). He gives the following instructions: if
the index can be halved, halve it and writes ; otherwise, writel, add one, and halve the
result. Repeat the process, writing from left to right, until the pattern has the correct
number of syllables.

To understand why Pingala’s algorithm works, letw represent a string ofn characters

drawn from the setfs;ig and let indw denote its index. Observe that the index oW is

odd if w starts with Sand even ifw starts with 1. If we remove the rst syllable of pattern

w to get a new pattern,w® then
1

. ’ (indw+1)=2 if indw is odd
(ind w)=2 if indw is even

Suppose we know the index of patterp (but not the pattern itself), and wish to recover

the pattern. Since we use a repeated routine, it is convenietd renamep asp,. We

recover the syllables op, one at a time; at each point the string of unknown syllables is

odd, p, begins withs; therefore,p, = Sp,; 1, where indpy; 1 = (ind p, +1)=2. If ind p, is



Figure 2: Recursion in Indian architecture: the Kandariya Mhadeva temple



even,p, begins with; therefore,p, = 1py; 1, where indp,; 1 = ind p,=2. We now know the
index of p,; 1 in the list of patterns of lengthn i 1. Repeat the algorithm until all the

characters ofp, have been generated.

The following steps show that the fth pattern of ve syllables §SSISs:

pattern indp parity
Ps 5 odd
Sps (5+1)=2=3 odd
SSps (3+1)=2=2 even
SSIp; 2=2=1 odd
SSIsp; (1+1)=2=1 odd
SSISS

Problem 3: nding the index of a pattern.

Now, suppose you are given a pattern. Where does it belong on tl&? Pingala's
indexing process reverses the algorithm he developed for Peh 2. The index of the
pattern of all long syllables is one. For any other pattern, sta with the rst short syllable
from the right. The instruction is simply \multiply by two" (in  order for the algorithm to
work, the starting number must be one). If the next syllable on thk left isS, again multiply
the resulting number by two; otherwise, multiply it by two and sibtract one. Repeat this
process until the leftmost character is reached.

This procedure stems from the observation that ifv is a pattern,

ind sw
ind w

2indwij 1
2ind w

Since adding any number of's to the end of a word does not change its index, Pingala's
process begins with the rst short syllable from the right. Whilethe original pattern is
recreated by adding one syllable at a time on the left, the algthm keeps track of the
index of the current pattern.

The following steps show that the index ofSISS is ve.



pattern index
S§ 1
ISS 2¢1=2
SIS 2¢2j 1=3
SSISS 2¢3j 1=5

Bhatt's algorithm for nding the index of a given pattern is again strikingly di®erent from
Pingala's. It stems from the observation that ifw is a meter ofn syllables,

indws = indw
indwl! = indw+2":

Accordingly, Bhatt assigned a place value to each syllable. Raad from the left, the rst
place has value one, the second has value two, the third hasualfour, and so on, so that
the value of theith place is 2i 1. Bhatt observed that the index of a pattern is one more
than the sum of the place values of its short syllables.

For example, the index ofsISis six, because short syllables fall in the rst and third
columns:

1 + 1 + 0¢2 + 4 + 0¢8 = 6
| S | S

Perhaps Bhatt was predisposed to use a positional indexing systeas, the positional
decimal numbers are thought to have been adopted in India de to the century of his
birth [ 3].

We may now return to Bhatt's somewhat opaque solution to Probla 1. Suppose we know
the kth pattern of n syllables, and wish to write the k + 1)st pattern. We de ne
(M CHSN o) 1

K = 0 if the ith syllable is$

1 if the ith syllable is|
Then the index of thekth pattern is

1+ Kky+2ky +4kg+ 11+ 2M k.

to Os, replace the rst 0 with 1, and leave the rest of the sequencoae.



Problem 4: counting patterns of n syllables.

The fourth problem both Pingala and Bhatt tackled involves ounting the possible poetic
meters of a xed number of syllables]]. In other words, they wrote procedures to evaluate
2". Bhatt gives two algorithms [5]. The rst is based on his solution to the index- nding
problem. He observes that the index of the pattern afi short syllables is 2. Using his
algorithm, this equals one plus the sum of the positional valuef each syllable; in other
words,

X

=1+ 2%

i=1
Bhatt's second algorithm involves summing the binomial coedients ,,C, ; we will discuss
these in the next section.

Pingala, on the other hand, again gives a recursive algorithtvased on the observation that

Yo .
- (2777  (usedifn even)

2" 1¢2  (used ifn odd)

(of course, both statements are equivalent, but Pingala wouldot have been able to
evaluate 22 for n odd) [5]. For example, we calculate 2

2°=28¢2=(2%%2¢2 = ((29)?)?2 ¢2:

The binary number system

In some ways, Pingala and Bhatt anticipated the development dhe binary number
system, which was not fully described until Gottfried Leibniz @ so in the seventeenth
century.! The normal decimal-to-binary conversion procedure is quitsimilar to Pingala's
process for nding an unknown pattern given its index. In thisase, the decimal number
serves as the \index." Letb be a string of ones and zeros, and let dbde the decimal
value of the binary numberb represents. We may concatenate with either O or 1; note
that dechO = 2decb and dedbl = 2decb+ 1. Therefore, to nd bif its decimal value is
known, divide the decimal by two, write the remainder, and aatinue this process, writing
the successive remainders on the left.

1The binary number system is a base-two positional number system. It has two digs, 0 and 1, and its
place values are powers of two. Thus, the decimal numbers 1, 2, 8, and 11 have bigaepresentation 1, 10,
1000, and 1011, respectively.



In contrast, Bhatt's algorithm, which assigns a positional vala to each syllable, recalls the
binary-to-decimal conversion formula

X .
dech\by, 1::: by = h2':

i=1

Although these relationships are intriguing, there are substaial di®erences between
Pingala and Bhatt's indexing system and the binary numbers. Thre is no evidence that
either author considered his indexing procedure to be a numbgystem; it was not used to
perform computations, or indeed to count anything other tharpoetic meters. The
convention of assigning the index one, rather than zero, to thest pattern makes
computations problematic (givingSs:::SSthe index zero was not an option at the time|in
fact, we have no record that the Indians considered zero a nuetbbefore the fth century
AD). The correspondence between metrical patterns and theindices is one-to-one only if
the number of syllables is xed (this is like considering 1, 0and 001 to be distinct
numbers). The other dissimilarity|which arises from the ordering of poetic metersjis

that the highest-valued columns are on the right. The positioal decimal number system
developed in India places the highest-valued columns on theftl

Pingala developed a completely di®erent way of catalogingeters that is much more
commonl|in fact, it is used by poets and drummers today. This isconsidered in the last
section of this chapter.

Pascal's Triangle and the Expanding Mountain of
Jewels

Pingala is also credited with the discovery of \Pascal's" Triankg in India, which he called
the meruprastra, or \the expanding mountain of jewels" (neru is a mythical mountain
made of gold and precious stones, amastra is the word for expansion). However,
precisely which problem in prosody led him to this discovery isngertain. Some medieval
commentators interpret the numbers in the meruprastéra as éng the number of
combinations ofn syllables, taken one at a time, taken two at a time, and so on (each
syllable is considered di®erent, rather than just long or short)When each list counting
combinations ofr syllables drawn from sets oh syllables is arranged horizontally, and
successive lists are stacked, the numbers form a triangular arrthat one can extend

inde nitely:
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Pingala recognized that each interior number is the sum of thivo numbers above it. This
array is known as Pascal's triangle|though, of course, it wasrt yet named for Pascal (who
was born in France in 1623).

The roof of the Kandariya Mahadeva temple ( gure2) depicts Mount Meru surrounded by
smaller copies of itself. Note that the meruprastra is also madgp of smaller copies of
itself!

Bhatt discovered the same triangle, but in a di®erent contexthe found the number of
meters ofn syllables havingr short syllables. The fact that the two problems produce the
same triangle is, of course, no coincidence. The number of way<looosingr syllables
from a collection ofn di®erent syllables {(C; in modern notation) equals the number of
ways of choosing the locations for the short syllables within a meter oh short or long
syllables. For example, the choice df2; 5; 7g from the collectionf1;2;:::;8g corresponds
to the eight-syllable meter that has short syllables in position 2, 5, and 7 §15SIS13).

Returning to Problem 4, Bhatt's interpretation of the triangle shows that the sum of the
entries in the nth row of the triangle gives the total number of meters of syllables. In
modern notation, Bhatt's second solution to Problem 4 is the fonula

None of the Indian authors explain the relationship between #haddition rule for obtaining
successive rows of the meruprastra and the structure of the mesethey represent.
However, given Pingala's fondness for recursive rules, he maywéabserved a one-to-one
correspondence between the ways of choosingbjects from a collection oin objects and
the ways of choosing either j 1 objects out ofnj 1 objects orr objects out ofnj 1
objects. For example, there are ten three-element combinatis off 1; 2; 3; 4; 5g. Partition
these into combinations that contain 5 and combinations thatlo not. If a combination is
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to contain the element 5, you choose the other two elements finathe setf 1, 2, 3, 4 in 4C,
ways; add to this the,C; three-element combinations that do not contain 5 to arrive tathe
equationsC; = 4C, + 4C3. We can make a similar argument for meters; in this case,
partition the ve-syllable meters into those with the fth syll able short and those with the
“fth syllable long.

The 12th-century writer Bhaskara gives yet another algoritim in his Lilavati [2]. To nd
the nth row in the meruprastra, start by writing the numbers 1, 2,:::, n, and above them
write the numbersn, nj 1,:::, 2, 1, like so (shown fom = 5):

54 3 2 1

1 2 3 45
The rst number in the row is 1 (this is true for everyn). Obtain the other numbers in the
row by succesively multiplying and dividing by the numbers younave written:

1¢5=1=5; 5¢4=2=10; 10¢3=3=10; 10¢2=4=5; 5¢1=5=1:

This algorithm is iterative; you do not have to generate any gvious rows in order to nd
row n.

Although he does not make a connection to the recursive additicule found by Pingala,
Bhaskara comments that thenthe row of the meruprastra counts both the number of
ways of choosing of n di®erent objects and the number of ways of arrangingobjects of
one kind andn j r of another. He also notes that prosody is only one of the possible
applications of the meruprastra.

The Hemachandra-Fibonacci numbers

The 12th-century writer AcArya Hemachandra also studied poetic mete®]. Instead of
counting meters with a xed number of syllables, Hemachandra aoted meters having a
~xed duration, counting short syllables as one beat and long dgbles as two beats, as
shown in gure 3. The numbers of patterns form the sequence 2; 3;5;8;: : ..
Hemachandra discovered that each entry is found by adding th&vo previous. In other
words, he found the \Fibonacci" numbers|half a century before Fibonacci! Indian poets
and drummers know these numbers as \Hemachandra numbers."

Hemachandra explained why the sequence counts the succesive Inera of patterns of
length n. Each pattern ending with a short syllable is a pattern of durabn nj 1 followed
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1 beat 2 beats 3 beats 4 beats 5 beats

| S N 33 ISS SIS
I M "ns SIS IS

m N ms 1SN

Sl St

Figure 3: Meters listed by duration

by a short syllable; the number of strings of duratiom j 1 isHp; 1, and therefore the
number of patterns of durationn that end with a short syllable isH,, ;. Each pattern
ending with a long syllable begins with a string of syllables obtal duration nj 2, followed
by a long syllable. Therefore, there arél,; » of these. Finally,H,, the total number of
patterns of duration n, equalsH,; 1 + Hy; 2. SinceH; =1 and H, = 2, we obtain the
Hemachandra sequence. This derivation of the Hemachandra-Biacci numbers is
identical to the \domino-square problem™: in how many ways cayou tile a 1£ n rectangle
with 1 £ 2 dominoes and E 1 squares? Figurel shows a visual solution to this problem.

T
Start with the patterns of T T1 1
B ]

length n in one big pile
[ @ O rE
C Il 1 m

Separate them into two those Il T
smaller piles: ending L] those
in a long B 5 - ending

Remove the last syllables. - RN %

You are left with the patterns % % I
of length nj 2 plus the 0 C o ©
patterns of length nj 1. | o O

Figure 4: Visual solution to the domino/square problem

It is possible that Pingala was aware of this sequence, as wellhd tenth-century
commentator Yadava interprets Pingala's rule \and the two nixed" to mean that the
patterns of duration n are built up of shorter patterns (in this case, patterns of duréon
ni landnj 2).

The Prdkrta Pai ngalg dating from the the early 14th century AD, makes an explicit
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sSI sl

Figure 5: The Hemachandra numbers are sums along diagonals lire tmeruprastira

connection between the Hemachandra numbers and Pingala's nmgrastira. The author
demonstrated that the Hemachandra numbers are, in fact, sums nfimbers on certain
diagonalsin the meruprastra. Figure 5 provides a visual explanation of this property: the
“ve four-beat rhythms lie on the diagonal labeled,. The process of combining rhythms
to form entries in the triangle also ensures that the patternsroD 4 are formed from the
patterns on D3 and D».

Fibonacci's thirteenth-century \discovery" of the sequencé¢hat bears his name about fty
years after Hemachandra's discovery of the same sequence wab@oty no coincidence.
Fibonacci, who was educated in North Africa, was quite familrawith Eastern mathematics
(in particular, he introduced the Indian positional number sgtem to the West) B]. He may
have rst encountered the \Fibonacci" sequence in the East. Hower, his explanation of
the sequence as the sizes of successive generations of rabbitsti$ound in India.

Musical rhythm patterns and the Padovan numbers

The poetic meters that Pingala and Hemachandra studied have amalogue in music, and,
indeed, many of the rhythms used in classical Indian music havedredeeply in°uenced by
the meters of Sanskrit poetry.

In music, rhythm patterns are formed by grouping beats into ntes, which play the role of
syllables in poetry. A drum is hit on the rst beat of each note ad silent on the following
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beats; the length of a note is the number of beats between succesdits. Some types of
music, especially dance music, are identi ed with speci ¢ rhyth patterns. Many of these
patterns are formed of notes of two or three di®erent duratis. For example, in salsa
music, which has origins in Cuba, one can hear the pattern cadl the clave The 12-beat
clave rhythm and many other characteristic rhythm patterns fom around the world are
composed of notes of lengths two or three beats; one also nds maratterns consisting of
notes of lengths one or two beats. Figuré shows a few examples. To hear some of these
patterns, | suggest SongTrellis€], where you can hear the merengue and cumbia bell parts
both separately and in context. The guajira may be familiar aghe rhythm of Leonard
Bernstein's \America," from West Side Story. | encourage the @er to experiment with
creating and listening to rhythm patterns; a good place to starts the web applet Jas's
MIDI Hand Drum Rhythm Generator [8].

Rhythms of one- and two-beat notes
merengue bell part (Dominican Rep.) BT T T T 1
cumbia bell part (Columbia) EI_TT T T[T T [ T[]
mambo bell part (Cuba) [T TTTT TTTT [T

bintin bell pattern (Ghana)
also bembe shango (Afro-Cuban)I

Rhythms of two- and three-beat notes
lesnoto (Bulgaria) I [ ]
bomba (Puerto Rico) NN |
guajira (Spain) DN [ [ |
12-beat clave (Cuba) [ NN [ N

Figure 6: Dance rhythms

Hemachandra discovered the sequence that counts patterns okeand two-beat notes.
What sequence counts patterns consisting of two- and three-lig@mtes? Here are the rst
twelve entries of this sequence:

7 8 9 10 11 12
3 45 7 9 12

length(n) |1 2 3 4 5 6
number of patterns @,) |0 1 1 1 2 2
If P, is the number of such patterns, therP, = P,; 2 + Py; 3. The proof of this statement is
similar to the argument for notes of length one and two. In thixase, break the patterns of
length n into patterns of lengthnj 2 followed by a two-beat note and patterns of length

ni 3 followed by a three-beat note.
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Though not nearly as famous as the Hemachandra-Fibonacci nbers, this sequence,
named the Padovan numbers, has some interesting properties. stwell known that the
limit of the ratios of successive Fibonacci numbers is the gold@umber A= 1:618:::; the
limit of the ratios of successive Padovan numbers is the so-callglastic number." To nd
this number, observe that

I:)n :Pni2+Pni3:Pn52+ I:)ni3 .
Pni 1 Pni 1 Pni 1 Pni 1 Pni 3+ Pni 4.

Take the limitasn!1 of both sides and letp=1lim ,; P,=P,, 1. Then

_1, 1
T Teisp

sop is a solution to the cubic equationp® i pi 1 =0. The only real root of this equation
is the irrational number p = 1:324::: (the plastic number). There are several interesting
applications of the Padovan numbers|for example, they are réated to a spiral of
equilateral triangles in the way the Hemachandra-Fibonacciumbers are related to a spiral
of squares (seel[] for more applications).

Naming rhythms

Since there are hundreds of Sanskrit meters, remembering thatiern for any particular
meter requires some e®ort. Although Pingala’s indexing pratge is mathematically
impressive, being able to identify the patterrsSSiSias \number forty-one in the catalog of
six-beat rhythms" is not of much practical use.

Pingala's best and most well-known solution to this problem irslves the following
mapping of groups of three syllables to letters:

m sss
y IsS

r SIS |t ssi|bh Su
s Us |j 18l n 1

Begin by breaking the metersssisiinto groups of threes §SS-S1). These groups
correspond to the lettersmj. At this point, you've essentially converted a binary number
(base 2) into an octal number (base 8), which doesn't seem like niuprogress. However,
Pingala had a very clever plan. The lettersnj can be embedded in a word|say,
\mojo”|that is more memorable that \number forty-one.” For good measure, you write a
poem in the \mojo" meter than describes the essential characistics of the meter and
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includes the word \mojo." Musicians also use this method for reembering rhythm
patterns.

This is perhaps the earliest example of aarror-correcting code Typically, an
error-correcting code is a sequence that contains encodetbimation designed to °ag
errors in transmission (for example, typographical errors). @dit-card numbers and bar
codes both have this feature. Each important aspect of a Sangkmeter is encoded in the
poem. In this case, the rhythm of the poem and the name of its nest provide a check on
each other.

The history of the Sanskrit system of naming meters doesn't end witPingala. Either in
his time or later, the nonsense worgamatirdjabhdnasalagd came to be used as a way to
remember the mapping of triplets of syllables to letters7]. The word contains long and
short syllables (in the English transliteration of Sanskrit,a is a short vowel andh is a long
vowel):

ya-ma-a-d-ja-bha-na-sa-la-ggm = 1SSSISIIS.

The pattern 1SSSISiIShas the curious property that each string of three syllables oars
exactly once. For example, the rst three syllables form the patteriss, the second
through fourth syllables formsss, and so on. These patterns are named, using Pingala's
table, by their starting syllable (so that ya representdss). However, the number of
syllables in a meter doesn't have to be a multiple of three (you &y have noticed this “aw
in Pingala's method). The last two syllables]a and gam are used for the leftovers. It is
not known whether Pingala knew this mnemonic for the triplet, or if it was discovered by
poets and drummers that came after him.

The pattern 1SSSISIIS is very close to being what mathematicians call de Bruijn
sequenceA de Bruijn sequence is a sequence of letters drawn from somehalpet such
that every combination ofn letters occurs exactly once, if we are allowed to \wrap arowhi
from the end of the sequence to the beginning. The stringssiISil is a de Bruijn sequence
(we get the combinationill by wrapping around from the end to the beginning). Although
SSSISIN s also a de Bruijn sequence, we don't think of these two as fundantally
di®erent; they each produce the three-letter combinationis the same order, but start at a
di®erent point in the cycle. If we use this notion of sameness, tieeare onlytwo possible
de Bruijn sequences for three-letter patterns using the alpbat fs, 19. Figure 7 shows the
pattern on a circle, alongside a de Bruijn cycle for four-le#r patterns.

How can we nd the other de Bruijn sequence for combinations ofitee letters? The other
sequences of four letters? To investigate this question, it halpo start with an easier case:
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Figure 7: De Bruijn cycles for patterns of three and four letrs

two letters. I'll leave it to you to show that there is only one deBruijn sequence. One way
to start is to write down the eight three-letter combinations. The de Bruijn sequence can
be thought of as an ordering of these sequences: start with the ritree letters in the
sequence, then the second through fourth letters, etc. You prably notice that there are
some rules about which of these can follow each other. For exdmpls can be followed by
either1S1or ISS. In other words, either the stringliStor the string 11ISSmust appear in your
sequence. To nd all the possibilities, we can use a powerful repeatation called adirected
graph The vertices of the graph represent states (in this case, thréetter combinations).
If we can legally move from one state to another, connect themittv an arrow. The graph
is shown in gure 8. Any path that visits each vertex exactly once with give you a de
Bruijn sequence.

The four-letter problem is more complex; you now have twicesamany vertices. It is
dixcult to avoid drawing a graph that looks like a mound of spagetti! There is an clever
solution to this problem, however: represent each four-letteeombination as anedgein the
graph, as in Figure9. In this case, you now need to nd a path that visits each edge
exactly once. I'll leave that to you.
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Figure 8: A graph representing the de Bruijn sequence problerand a solution.
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Figure 9: A graph representing the de Bruijn sequence problemrfcombinations of four
letters.
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